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Abstract
ONETEP is a linear scaling code for performing first-principles total energy calculations within
density-functional theory (DFT). The method is based on the density-matrix formulation of
DFT and involves the iterative minimization of the total energy with respect to a set of local
orbitals and a density kernel. An overview is given of the kernel optimization methods proposed
in the literature and implemented in ONETEP, focusing in particular on the constraints of
compatibility, idempotency and normalization that must be applied. A method is proposed for
locating the chemical potential which may be useful in applying the normalization constraint
and analysing the electronic structure near the Fermi level.

1. Introduction

The popularity of density-functional theory (DFT) has grown
enormously over the last two decades. This is largely due to the
balance that it achieves between two competing requirements:
on the one hand it gives a sufficiently accurate treatment of
electron correlation for many purposes; on the other hand the
computational effort required is relatively low. Both of these
strengths derive from the mapping between the real many-
electron system and a fictitious system of non-interacting
particles that lies at the heart of DFT [1, 2]. This mapping
provides the formal connection needed to treat exchange and
correlation within the independent electron approximation
while reducing the complexity of the problem to the solution
of a single-particle Schrödinger equation.

The O(N3) asymptotic scaling of traditional DFT methods
with system size N arises from the cost of diagonalizing
the single-particle Hamiltonian or, if that process is carried
out iteratively, maintaining the orthogonality of the extended
single-particle wave functions. While this cubic scaling is
favourable when compared with methods based on correlated
wave functions, it still does not permit calculations on
the scale required to tackle nanostructures and biological
macromolecules containing thousands of atoms. For this
reason a considerable effort has been expended on the
development of linear scaling or O(N) methods which exploit

the ‘nearsightedness’ of quantum many-body systems [3, 4]
to ensure that the computational cost increases only linearly
with the system size. The long-term investment by several
groups is now resulting in a number of new codes, including
ONETEP [5, 6], SIESTA [7] and CONQUEST [8, 9], which
have been designed specifically for O(N) calculations.

A detailed comparison of the various O(N) methods
proposed for insulators and semiconductors can be found in
existing review articles [10, 11]. Briefly, the methods may
be divided into four categories: projection methods such
as the Fermi operator expansion [12, 13]; the divide and
conquer approach [14, 15]; generalized energy functionals
for non-orthogonal orbitals [16–21] and density-matrix (DM)
minimization methods. The ONETEP code falls into the last of
these categories, and this class of methods is the focus of this
article.

Section 2 outlines the general approach taken by DM
minimization methods. The constraints of idempotency and
normalization are considered in sections 3 and 4 respectively,
and the scheme currently implemented in ONETEP is
described in section 5.

2. Density-matrix minimization

The single-particle DM is chosen as the central variable
in many O(N) methods because it provides a complete
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Figure 1. Penalty functionals for idempotency proposed by (a) McWeeny and (b) Kohn shown as a function of a single orbital occupancy fn ,
all others being fixed at either zero or unity.

description of the fictitious Kohn–Sham system and demon-
strates the property of nearsightedness explicitly. In the posi-
tion representation, the DM ρ(r, r′) decays as the separation
of its arguments |r−r′| increases [22, 23]. Since a ground-state
DM is always separable [24], this form is adopted generally:

ρ(r, r′) =
∑

αβ

φα(r)K
αβφ∗

β(r
′). (1)

The {φα(r)} are a set of overlapping non-orthogonal
orbitals [25] that are typically centred on atoms. These orbitals
are often assumed to be real since the �-point is sufficient
to sample the Brillouin zone of the large systems appropriate
for O(N) methods. Spin is not considered explicitly here.
The overlap matrix S for these orbitals may be defined by its
matrix elements Sαβ = 〈φα|φβ〉 and the set of dual orbitals
{φα(r) = ∑

β Sαβφβ(r)} defined by 〈φα |φβ〉 = δαβ may be
generated where Sαβ is a matrix element of the overlap matrix
for the duals which is simply S−1. K αβ is a matrix element of
the density kernel K, which is the representation of the DM in
terms of the duals.

Linear scaling is obtained by enforcing nearsightedness:
the orbitals must be localized and the density kernel must be
sparse. Following [26], the orbitals in ONETEP are truncated
beyond a given radius (typically around 3.5 Å) and a longer
independent cutoff is applied to the density kernel. Unique to
ONETEP is the optimization of the local orbitals (known as
non-orthogonal generalized Wannier functions [27]) in terms
of a psinc basis set [28] equivalent to (and hence as accurate as)
a set of plane waves, in which the ‘FFT box’ technique [29] is
used to retain linear scaling even when fast Fourier transforms
(FFTs) are employed.

Density-matrix minimization methods proceed by mini-
mizing an energy functional of the DM with respect to the local
orbitals and the density kernel, subject to the appropriate con-
straints. This article concerns the optimization of the density
kernel so that from now on the local orbitals are assumed to be
constant. What follows could therefore be equally applied to
first-principles tight-binding [30, 31].

In order to find the ground state, three constraints must be
satisfied during the minimization: compatibility, that the DM
commute with the Hamiltonian [ρ, H ] = 0; normalization,
that the DM correspond to the correct number of electrons
tr(ρ) = Ne; and idempotency, that powers of the DM are

the same ρ2 = ρ. It is the third, non-linear constraint of
idempotency that is most difficult to enforce, and which is
considered first.

3. Idempotency

In terms of the Kohn–Sham orbitals {ψn(r)} (with eigenvalues
{εn}) and their occupancies { fn} the ground-state DM takes the
diagonal form (c.f. (1))

ρ(r, r′) =
∑

n

fnψn(r)ψ
∗
n (r

′). (2)

From this form, idempotency is seen to correspond to the
double constraint that the Kohn–Sham orbitals must be
orthonormal 〈ψn |ψm〉 = δnm and the occupancies must equal
zero or unity. For the ground-state DM, states below the
Fermi level μ (εn < μ) must be occupied ( fn = 1) and
states above the Fermi level (εn > μ) unoccupied ( fn =
0). Hence idempotency enforces the Pauli exclusion principle
and together with energy minimization applies the Aufbau
principle. It is also noteworthy that idempotency derives from
the orthonormality constraint that is the cause of the O(N3)

scaling of traditional methods. Dealing with this awkward non-
linear constraint may therefore be viewed as the price to be paid
for avoiding orbital orthonormality.

3.1. Penalty functionals

The vast majority of methods proposed in the literature
for imposing idempotency find their origin in the penalty
functional first proposed by McWeeny [24],

P[ρ] = tr
[(
ρ2 − ρ

)2
]

=
∑

n

(
f 2
n − fn

)2
, (3)

and illustrated in figure 1(a). It is clearly positive semi-
definite, vanishing if and only if the DM is idempotent.
Another attractive feature of this penalty functional is that
the Hessian matrix of second derivatives (evaluated at
idempotency) is the identity. Apart from being quartic
rather than quadratic, this functional could not be easier to
minimize. The method of steepest descents is already optimal:
more sophisticated methods (e.g. conjugate gradients) and
preconditioning schemes are unnecessary.
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Figure 2. Variation with a single orbital occupancy (the rest being
zero or unity) of the total energy E with (solid line) and without
(dashed line) the addition of the McWeeny penalty functional P to
enforce idempotency approximately. The positions of local minima
of the total functional are indicated by arrows.

It might be thought that such a penalty functional could
be used to enforce idempotency simply by minimizing a
generalized energy functional Q[ρ] = E[ρ] + αP[ρ] where
E is the energy functional to be minimized (this might
be the energy of the non-interacting Kohn–Sham system
tr(ρH ) or the energy of the real interacting electronic system
if the minimization is carried out self-consistently as in
ONETEP) and α is an energy parameter used to control the
strength of the penalty functional. Figure 2 illustrates how
such a functional might vary as the occupancy of a single
occupied orbital is varied. However since the slope of the
energy at fn = 1 is given by the Kohn–Sham eigenvalue
εn [32] (if the Kohn–Sham non-interacting energy is being
minimized then the dashed curve in figure 2 would be a
straight line), then the minimum of the total functional Q
cannot occur at fn = 1 whatever the value of α, so that
this scheme can only impose idempotency approximately at
best.

To circumvent this problem, Kohn [3] proposed to use the
square root of P as the penalty functional (see figure 1(b)) and
thus to minimize Q′[ρ] = E[ρ] + α

√
P[ρ]. As can be seen

in figure 3, for sufficiently large α greater than some critical
value αc (that depends on the Kohn–Sham eigenvalues {εn})
the total functional takes its minimum value for an idempotent
DM. However, Kohn’s functional is not differentiable at the
desired ground-state minimum, making it wholly unsuitable
for any practical minimization scheme [33].

0

Figure 4. Variation of the minimized total energy E (◦), total
functional Q = E + αP (�) and corrected energy (�) as a function
of the parameter α for crystalline silicon.

Another objection to the use of penalty functionals might
be the existence of multiple local minima. However the
normalization constraint eliminates most of these, and energy
minimization drives the DM towards the desired ground-state
minimum so that this is never a problem in practice if the
DM is suitably prepared initially. In principle, optimization of
the local orbitals provides a complete solution to the problem
since it rotates the representation of the DM and can therefore
convert a false local minimum into the global ground-state
minimum.

Returning to the functional Q[ρ] = E[ρ] + αP[ρ], it
can be shown that the error δ fn in an orbital occupancy (i.e. its
deviation from zero or unity) is given by

δ fn ≈ −εn − μ

α
. (4)

The minimization of this functional is robust and straightfor-
ward and compatibility is guaranteed at its minimum. The error
in the occupancies can be reduced by increasing the parameter
α, and the energy obtained at the minimum approaches the true
ground-state energy from below with an error that also scales
as 1/α, as shown in figure 4. However, since the functional
Q is differentiable at its minimum, a correction based upon a
Taylor expansion can be made so that the total energy may be
correctly calculated even when relatively small values of α are
employed [34].

Figure 3. Variation with a single orbital occupancy (the rest being zero or unity) of the total energy E with (solid line) and without (dashed
line) the addition of the Kohn penalty functional

√
P to enforce idempotency for three values of the energy parameter α: (a) α < αc, (b)

α = αc and (c) α > αc.
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Figure 5. Illustration of the purification transformation in terms of orbital occupancies for three cases: (a) the initial occupancy 2
5 converges to

zero; (b) the initial occupancy 6
5 converges to unity; (c) the initial occupancy − 2

5 converges to unity.

3.2. Purification

McWeeny [24] proved that steepest descents minimization of
P close to idempotency (where the step length may be fixed
to 1

2 ) results in the so-called purification transformation for
iteratively improving a trial DM ρ0 towards idempotency:

ρk+1 = 3ρ2
k − 2ρ3

k . (5)

This iterative procedure, illustrated in figure 5, converges if the
initial occupancies lie in the interval ( 1−√

5
2 , 1+√

5
2 ). However

tighter bounds are desirable: if the occupancies lie in [− 1
2 ,

3
2 ]

then the purified DM will be ‘weakly’ idempotent, i.e. its
occupancies will lie in [0, 1]. However this still allows the
possibility, shown in figure 5(c), that the occupancy could
‘flip’ from unoccupied to occupied or vice versa, which
might provoke instabilities or result in local minima during the
minimization procedure. This can be avoided by ensuring that
the occupancies all remain within the interval ( 1−√

3
2 , 1+√

3
2 ). In

ONETEP the extremal occupancies are monitored to enforce
this.

3.2.1. Adaptive purification. The occupancies { fn} are the
eigenvalues of the density kernel K that satisfy the generalized
eigenvalue equation Kxn = fnS−1xn . The corresponding
eigenvectors {xn}, which relate the Kohn–Sham orbitals {ψn}
to the local orbitals {φα}, are dense irrespective of the sparsity
of K. Nevertheless, a small fixed number of eigenvalue–
eigenvector pairs may still be found in O(N) operations using
iterative methods. The extremal occupancies can be found
by extremising the generalized Rayleigh quotient λ(x) =
x†Kx/(x†S−1x), which is far more accurate than Gershgorin
estimates. In fact, the method is implemented using the
equivalent function λ(y) = y†SKSy/(y†Sy) that avoids the use
of S−1 (yn = S−1xn relates the {ψn} to the duals {φα}).

Should the extremal occupancies lie outside the desired
interval, then ‘adaptive’ purification is used to bring them back
inside. This simply involves steepest descents minimization
of P where the optimal step length is calculated explicitly
(rather than fixed to 1

2 ) in order to avoid instabilities. This
minimization procedure converges rapidly due to the properties
of P mentioned above and is more efficient than generalized
purification transformations [35–37].

3.2.2. Canonical purification. The canonical purification
method [38] is a non-self-consistent method for determined the
ground-state DM of a fixed Hamiltonian. The eigenvalues of
the Hamiltonian are inverted, shifted and scaled so that they
lie in the interval [0, 1] i.e. εn → 1

2 (1 + (μ − εn)/εmax)

where εmax = max({|εn − μ|}). The extremal eigenvalues
of the Hamiltonian matrix H in the representation of the
local orbitals {φα} can be found by extremising the quotient
ζ(y) = y†Hy/(y†Sy). The purification transformation (5) is
then repeatedly applied until the Kohn–Sham energy tr(KH)
converges. In the absence of kernel truncation compatibility
is guaranteed by construction. When truncation is applied,
matrix products can only be approximately evaluated so that
the Kohn–Sham energy eventually starts to increase, and the
algorithm is terminated at this point. This method is used in
ONETEP to generate the initial guess for the density kernel. A
modified version that allows greater flexibility in the choice of
purification transformation has also been developed [39].

3.3. Li–Nunes–Vanderbilt method

By far the most widespread DM minimization method is
that attributed to Li, Nunes and Vanderbilt (LNV) [40, 41]
and reported simultaneously by Daw [42]. The purification
transformation is used to define the DM ρ in terms of an
auxiliary matrix σ as ρ = 3σ 2 − 2σ 3 where σ is defined by:

σ(r, r′) =
∑

αβ

φα(r)L
αβφ∗

β(r
′) (6)

and Lαβ is a matrix element of the auxiliary kernel L which is
related to the density kernel by K = 3LSL − 2LSLSL.

Minimizing the total energy E[ρ] with respect to σ by
optimizing the matrix elements of the auxiliary kernel L
naturally drives the DM to idempotency. As long as the
eigenvalues of L remain within the interval [− 1

2 ,
3
2 ], then the

purified DM ρ will be weakly idempotent and a variational
estimate of the ground-state energy is obtained. Moreover,
because the energy functional is a cubic functional of L the
method does not suffer from multiple minima. However this
cubic dependence also means that the method is potentially
unstable should any of the eigenvalues of L stray outside the
range over which the purification transformation converges.
A number of variants of the original LNV method have been
proposed [43, 44].
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4. Normalization constraint

All of the above methods for imposing the idempotency
constraint need to be combined with a method for enforcing
normalization. While this linear constraint is rather simpler
to deal with, the manner in which this is done may affect
the overall stability of the method. A Lagrange multiplier
(the chemical potential μ) may be employed to ensure that
the minimum of the functional used corresponds to the correct
number of electrons. This corresponds to minimizing the grand
potential
 = E −μN rather than the energy. The value of the
chemical potential may vary during the calculation, and may
not always be straightforward to determine.

There are three main approaches that have been taken to
imposing normalization within the LNV method. The first is
to constrain the purified electron number tr(ρ) = tr(KS) =
tr(3LSLS − 2LSLSLS) which is a cubic function of the
auxiliary kernel L. Since the chemical potential is not easily
determined, this approach involves projecting search directions
to be orthogonal to the gradient of the purified electron number
with respect to L to ensure that the purified electron number
is fixed to first order. When a trial step is taken, L must be
returned to the correct number of electrons by moving L along
the electron number gradient [26, 45].

The second approach is to constrain the unpurified
electron number tr(σ ) = tr(LS) [43]. Since this quantity
is linear in L the chemical potential is straightforwardly
determined. Choosing the correct chemical potential
corresponds to projecting the search direction to be orthogonal
to the unpurified electron number gradient, but since the
constraint is linear no correction needs to be applied after
changing L.

The third approach is to generate a normalized and
purified DM by construction, by rescaling i.e. modifying the
purification transformation to

ρ = Ne
3σ 2 − 2σ 3

tr
(
3σ 2 − 2σ 3

) . (7)

Although this is no longer a cubic dependence, and might
therefore reintroduce multiple minima, in practice this has not
been observed. The extra terms in the denominator generate
terms in the search direction that automatically project out
the electron number gradient, and effectively determine the
chemical potential. Any correction to the electron number
(only necessary when the local orbitals are optimized) is
carried out by rescaling L appropriately.

4.1. Effect of truncation

Since O(N) is only achieved when the auxiliary and density
kernels are truncated according to some spatial cutoff, it is
vital to assess the effect of this truncation, which can be
dramatic. In ONETEP, imposing the normalization constraint
via the unpurified electron number has proved unstable for
periodic systems, in which the purified and unpurified electron
numbers can differ by a large amount. However it should be
noted that this approach was proposed as part of a method that
takes a rather different approach to truncation [43]. Instead of

Figure 6. Schematic illustration of the purified electron number
gradient as a function of (a) orbital occupancy and (b) Kohn–Sham
eigenvalue.

applying fixed sparsity patterns via spatial cutoffs on the local
orbitals and kernels, thresholding is used to apply truncation
via upper bounds on the values of matrix elements, which is
necessary when the local orbitals are expanded in a Gaussian
basis set. Within the regime of tight thresholds this approach
to normalization may well be much more successful.

Truncation can also have a marked effect on normalization
imposed using the gradient of the purified electron number.
Imposing a finite range on the density kernel is qualitatively
similar to truncating a Fermi operator expansion [12, 13] or
introducing a finite electronic temperature, in that while the
occupancies remain clustered about zero and unity they are
smeared out. This applies particularly to states close to the
Fermi level. The purified electron number gradient 6σ(1 − σ)

is shown in figure 6 and it peaks markedly around the chemical
potential. This means that the weight of the projection or
correction can fall on a small number of states close to the
Fermi level. Even a small change in the total electron number
may require significant changes in the occupancies of these few
states, and may cause them to be pushed outside the range of
stability of the purification transformation. For this reason the
rescaling approach was derived and implemented in ONETEP
and does appear to confer stability upon the method.

4.2. Locating the chemical potential

A method for determining the chemical potential μ is desirable
for a number of the methods outlined above e.g. canonical
purification and normalization within the LNV method. It is
possible to take an empirical approach by running a number
of simulations with different values of μ until the correct
electron number is obtained at convergence, but this involves a
significant amount of wasted effort. The difficulty stems from
the fact that in general the chemical potential lies between
interior rather than extremal eigenvalues of the Kohn–Sham
Hamiltonian. The method of extremising a Rayleigh quotient
cannot therefore be applied directly.

The folded spectrum method [46–48] has been used
successfully to find the interior eigenvalues λ of a given
matrix A that lie closest to a given reference value λref. The
eigenvalue spectrum of the matrix A is ‘folded’ up into the
positive semi-definite spectrum of the matrix (A − λref)

2.
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The smallest eigenvalues of the folded matrix correspond
to the eigenvalues of A closest to λref. The problem of
locating interior eigenvalues may therefore be converted into
an extremal eigenvalue problem (albeit at the cost of some loss
of efficiency due to the increase in condition number that the
folding step produces). This method has been applied to the
problem of finding the eigenvalues of a Hamiltonian closest to
a given reference energy (usually the Fermi level).

When the density kernel is truncated, its eigenvalues (the
orbital occupancies) closest to 1

2 belong to those states nearest
the chemical potential. These may be found by minimizing
the Rayleigh quotient η(y) = y†S(KS − 1

2 )
2y/(y†Sy) with

respect to the dense vector y. The corresponding Kohn–Sham
eigenvalues can then be accurately estimated by evaluating
ζ(y) = y†Hy/(y†Sy) (this estimation becomes exact as
the calculation converges since compatibility implies that K
and H may be diagonalized simultaneously). This method
may therefore be used to locate the energies of the states
immediately above ε+ and below ε− the chemical potential
i.e. the LUMO and HOMO in molecular systems or the
conduction band minimum and valence band maximum in
extended systems. The chemical potential can therefore be
estimated as μ = 1

2 (ε+ + ε−). When updating rather than
initially locating the chemical potential, convergence may be
accelerated by seeking the occupancies closest to those found
during the previous iteration rather than 1

2 .
In the absence of truncation this method will not succeed

since the orbital occupancies will all be zero or unity. However
since the kernel is then dense linear scaling cannot be achieved
and the O(N3) cost of diagonalizing H directly will not add
significantly to the cost of the calculation.

This scheme may be used to find and update the chemical
potential needed by O(N) schemes such as the LNV method
or canonical purification. In addition it may be used to analyse
the electronic structure of a system once the ground state has
been found e.g. to estimate a reference energy in the band gap
prior to a folded spectrum calculation of the states closest to
the Fermi level.

5. Implementation in ONETEP

In this section further computational details of the methods
implemented in the ONETEP code are given, along with an
outline of how these methods are combined in the kernel
optimization part of the code. Further details of the parallel
implementation [49] and examples of its applications to a
variety of systems can be found elsewhere [50–52].

5.1. Non-orthogonality

Throughout this article a distinction has been made between
quantities that are covariant, such as the local orbitals {φα},
overlap Sαβ and Hamiltonian Hαβ matrix elements (all with
Greek subscripts), and those that are contravariant, such as the
dual orbitals {φα} and the inverse overlap matrix elements Sαβ

(all with Greek superscripts). This is necessary because of the
non-orthogonality of the local orbitals [53, 54].

In particular, when calculating search directions from
gradients of functionals, it is necessary to use the metric

tensors (the overlap matrix and its inverse) to convert between
covariant gradients and contravariant search directions. For
example, the gradient of the Kohn–Sham energy E = tr(KH)
with respect to a matrix element of the contravariant density
kernel K αβ is a covariant quantity ∂E/∂K αβ = Hβα.
The appropriate search direction is the contravariant quantity
obtained by ‘raising’ both indices of Hβα using the metric
tensor Sαβ and may thus be written S−1HS−1. This requires
the inversion of the overlap matrix, which may be achieved
using Hotelling’s method [55], and results in a considerable
improvement in the convergence of the method [56]. An
alternative approach [44] is to transform the problem to an
orthogonal representation by directly calculating the sparse
inverse Cholesky factor of S [57, 58].

5.2. Overall scheme

The combination of methods implemented in ONETEP is as
follows:

(i) the local orbitals {φα} are initially constructed by trun-
cating pseudoatomic or Slater-type contracted Gaussian
atomic orbitals;

(ii) the initial charge density is constructed by superposing
atomic charge densities, from which the initial Hamilto-
nian in the representation of the local orbitals can be cal-
culated;

(iii) the initial (non-self-consistent) density kernel is obtained
using canonical purification [38];

(iv) this initial density kernel is then refined (self-consistently)
using the approximate penalty functional method [34];

(v) the density kernel is further optimized using one of the
variants of the LNV method described in section 3.3.
During this process the extremal occupancies are
monitored and adaptive purification is applied if necessary
to ensure stability;

(vi) once the density kernel has been converged to the desired
tolerance the local orbitals are updated, and the kernel
optimization is repeated from step (v). The algorithm
terminates when the energy is converged with respect to
the density kernel and the local orbitals.

The density kernel optimization in steps (iv) and (v) involves
direct minimization of the total energy of the real system
of interacting electrons. No density or potential mixing is
employed and the method is variational by construction [59].

A key feature is the combination of different methods to
ensure that the algorithm is stable. A combination of the LNV
method and purification has been proposed before [60] but the
refinements of monitoring the occupancies so that additional
purification steps are taken only when necessary, and the use
of adaptive purification to ensure stability make the ONETEP
approach particularly robust without any loss of efficiency.

6. Conclusions

An overview of the variety of O(N)methods for optimizing the
density kernel within the representation of a fixed set of local
orbitals has been given. The ONETEP code uses a combination

6
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of these methods to ensure robust and efficient minimization
of the total energy with respect to the density kernel. The
use of generalized Rayleigh quotients to monitor extremal
occupancies and, in conjunction with the folded spectrum
method, to locate the chemical potential, is a key tool in the
successful application of these methods.
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[58] Benzi M, Meyer C D and Tůma M 1996 SIAM J. Sci. Comput.

17 1135
[59] Skylaris C-K, Diéguez O, Haynes P D and Payne M C 2002

Phys. Rev. B 66 073103
[60] Bowler D R and Gillan M J 1999 Comput. Phys. Commun.

120 95

7

http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevLett.76.3168
http://dx.doi.org/10.1073/pnas.0505436102
http://dx.doi.org/10.1063/1.1839852
http://dx.doi.org/10.1002/pssb.200541457
http://dx.doi.org/10.1088/0953-8984/14/11/302
http://dx.doi.org/10.1088/0953-8984/14/11/303
http://dx.doi.org/10.1002/pssb.200541386
http://dx.doi.org/10.1103/RevModPhys.71.1085
http://dx.doi.org/10.1016/S1359-0286(96)80114-8
http://dx.doi.org/10.1103/PhysRevLett.73.122
http://dx.doi.org/10.1103/PhysRevB.51.9455
http://dx.doi.org/10.1103/PhysRevLett.66.1438
http://dx.doi.org/10.1063/1.470549
http://dx.doi.org/10.1103/PhysRevB.47.9973
http://dx.doi.org/10.1103/PhysRevB.48.14646
http://dx.doi.org/10.1103/PhysRevB.50.4316
http://dx.doi.org/10.1103/PhysRevB.51.1456
http://dx.doi.org/10.1103/PhysRevB.52.1640
http://dx.doi.org/10.1103/PhysRevB.56.9294
http://dx.doi.org/10.1103/PhysRev.135.A685
http://dx.doi.org/10.1103/PhysRevLett.86.5341
http://dx.doi.org/10.1103/RevModPhys.32.335
http://dx.doi.org/10.1103/PhysRevLett.69.3547
http://dx.doi.org/10.1103/PhysRevB.51.10157
http://dx.doi.org/10.1103/PhysRevB.66.035119
http://dx.doi.org/10.1063/1.1613633
http://dx.doi.org/10.1016/S0010-4655(02)00461-7
http://dx.doi.org/10.1103/PhysRevB.40.3979
http://dx.doi.org/10.1103/PhysRevB.56.6594
http://dx.doi.org/10.1103/PhysRevB.18.7165
http://dx.doi.org/10.1016/S0038-1098(98)00458-X
http://dx.doi.org/10.1103/PhysRevB.59.12173
http://dx.doi.org/10.1016/S0009-2614(00)00007-5
http://dx.doi.org/10.1016/S0009-2614(01)00409-2
http://dx.doi.org/10.1016/S0009-2614(02)00160-4
http://dx.doi.org/10.1103/PhysRevB.58.12704
http://dx.doi.org/10.1063/1.1559913
http://dx.doi.org/10.1103/PhysRevB.47.10891
http://dx.doi.org/10.1103/PhysRevB.50.17611
http://dx.doi.org/10.1103/PhysRevB.47.10895
http://dx.doi.org/10.1063/1.473579
http://dx.doi.org/10.1063/1.477969
http://dx.doi.org/10.1103/PhysRevB.53.7147
http://dx.doi.org/10.1103/PhysRev.46.828
http://dx.doi.org/10.1021/j100059a032
http://dx.doi.org/10.1063/1.466486
http://dx.doi.org/10.1002/pssb.200541328
http://dx.doi.org/10.1088/0953-8984/17/37/012
http://dx.doi.org/10.1021/jm060190+
http://dx.doi.org/10.1063/1.2796168
http://dx.doi.org/10.1103/PhysRevA.43.5770
http://dx.doi.org/10.1016/S0009-2614(97)00813-0
http://dx.doi.org/10.1103/PhysRevB.64.195110
http://dx.doi.org/10.1016/S0010-4655(00)00188-0
http://dx.doi.org/10.1137/0916067
http://dx.doi.org/10.1137/S1064827594271421
http://dx.doi.org/10.1103/PhysRevB.66.073103
http://dx.doi.org/10.1016/S0010-4655(99)00221-0

	1. Introduction
	2. Density-matrix minimization
	3. Idempotency
	3.1. Penalty functionals
	3.2. Purification
	3.2.1. Adaptive purification.
	3.2.2. Canonical purification.

	3.3. Li--Nunes--Vanderbilt method

	4. Normalization constraint
	4.1. Effect of truncation
	4.2. Locating the chemical potential

	5. Implementation in ONETEP
	5.1. Non-orthogonality
	5.2. Overall scheme

	6. Conclusions
	Acknowledgment
	References

